
Sample Theoretical Exercises

BIOENG-210

April 7, 2025

Question 1: Advanced Expectation Manipulation

Problem: In a pharmacokinetics study, a drug’s concentration C in the blood follows the exponen-
tial decay model:

C(t) = C0e
−λt + ϵ(t),

where C0 is the initial concentration, λ is the elimination rate, and ϵ(t) is a random error with
E[ϵ(t)] = 0 and variance σ2.

1. Show that E[C(t)] = C0e
−λt.

2. Compute Var(C(t)) assuming C0 is a constant.

3. Suppose C0 itself is a random variable with E[C0] = µ0 and Var(C0) = τ2. Find E[C(t)] and
Var(C(t)].

Solution:

1. By linearity of expectation:

E[C(t)] = E[C0e
−λt + ϵ(t)] = C0e

−λt + E[ϵ(t)] = C0e
−λt.

2. Since variance is additive for independent variables:

Var(C(t)) = Var(C0e
−λt) + Var(ϵ(t)) = 0 + σ2 = σ2.

3. Now, if C0 is random:
E[C(t)] = E[C0]e

−λt = µ0e
−λt.

Using the independence of C0 and ϵ(t):

Var(C(t)) = e−2λtVar(C0) + Var(ϵ(t)) = τ2e−2λt + σ2.

Question 2: Marginal and Conditional Probabilities in Disease
Diagnosis

Problem: A diagnostic test for a disease correctly identifies 90% of the diseased patients and has
a false-positive rate of 15%. The disease prevalence in the population is 5%.

1. Compute the probability that a randomly selected individual tests positive.

2. Given that a person tested positive, what is the probability that they actually have the disease?
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3. What happens to this probability if the prevalence drops to 1%?

Solution:

1. Using the law of total probability:

P (T+) = P (T+|D)P (D) + P (T+|Dc)P (Dc),

where P (T+|D) = 0.9, P (D) = 0.05, P (T+|Dc) = 0.15, and P (Dc) = 0.95.

P (T+) = (0.9)(0.05) + (0.15)(0.95) = 0.045 + 0.1425 = 0.1875.

2. Applying Bayes’ theorem:

P (D|T+) =
P (T+|D)P (D)

P (T+)
=

(0.9)(0.05)

0.1875
= 0.24.

So only 24% of those who test positive actually have the disease.

3. If P (D) = 0.01:

P (T+) = (0.9)(0.01) + (0.15)(0.99) = 0.009 + 0.1485 = 0.1575.

Then,

P (D|T+) =
(0.9)(0.01)

0.1575
= 0.057.

This shows the effect of low prevalence on predictive value.

Question 3: Sampling Distributions and Hypothesis Testing

Problem: A researcher measures the blood glucose levels of 40 individuals and wants to test if the
mean differs from 100 mg/dL. The sample mean is 105 mg/dL and sample variance is 16 mg2/dL2.

1. What is the sampling distribution of the sample mean?

2. Compute the test statistic.

Solution:

1. The sampling distribution is:

X̄ ∼ N(µ, σ2/n) ≈ N(100, 16/40).

2. The test statistic is:

t =
105− 100√

16/40
=

5√
0.4

=
5

0.632
≈ 7.91.

From statistical tables, this yields a very small p-value, indicating strong evidence against H0.
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Figure 1: Left: Plane of an anatomical MRI scan. Right: Segmented anatomical image. In red,
white matter; in blue, gray matter; in green, cerebrospinal fluid.
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Figure 2: Left: Histogram of pixel values of the image (background excluded). Right: Gaussian
distribution corresponding to the pixel values of the 3 tissue types.

Question 4: MRI case study

You are working as a data analyst in a neuroscience lab where they work with anatomical MRI
images (magnetic resonance intensity), as the one shown in Figure 1, left. After pre-processing the
images, you need to segment the image to infer what pixels correspond to white matter (WM), gray
matter (GM) and cerebrospinal fluid (CSF) Figure 1, right.

One of the clinicians in the lab tells you that these 3 types of tissues are easy to distinguish in
the images, that pixel intensity is mostly sufficient to distinguish them. Therefore, you decide to
plot the histogram of pixel values and observe Figure 2.

It seems that indeed the distribution of pixel value (X) has 3 distinct modes and you decide to
model it as such. One model that seems accurate to you is a mixture of gaussians (TK:Fig) where
you model the whole pdf of pixel values as a combination of 3 gaussians with different means and
variances:

p(X) = πwN (µw, σw) + πgN (µg, σg) + πcN (µc, σc)
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Where πw+πg+πc = 1, πw, πg, πc ≥ 0. Here N (µ, σ) denotes a gaussian distribution with mean
µ and standard deviation σ.

a) At a first glance, this expression looks a bit strange to you and want to check whether p(x) is
a valid pdf. Check that p(x) fullfils the properties of a pdf.

Solution: To check that p(x) is a valid pdf, we need to check two properties:

(a) p(x) ≥ 0 for all x.

(b)
∫ +∞
−∞ p(x)dx = 1.

Since the gaussian pdfs are non-negative for all x:

πwN (µw, σw) + πgN (µg, σg) + πcN (µc, σc) ≥ πw + πc + πg ≥ 0,∀x

For the second property:∫ +∞

−∞
p(x)dx = πw

∫ +∞

−∞
N (µw, σw)dx+ πg

∫ +∞

−∞
N (µg, σg)dx+ πc

∫ +∞

−∞
N (µc, σc)dx

Since
∫ +∞
−∞ N (µ, σ)dx = 1, we have:∫ +∞

−∞
p(x)dx = πw + πg + πc = 1

Therefore, p(x) is a valid pdf.

b) To further understand this distribution, you want to know what the total mean of this dis-
tribution is. Compute E[X] as a function of πw, πg, πc and the means and variances of the
normal distributions.

Solution: By linearity of the expectation operator, the total mean of the distribution is given
by:

E[X] = πgE[N (µg, σg)] + πwE[N (µw, σw)] + πcE[N (µc, σc)]

We substitute the expectations of the normal distributions:

E[X] = πgµg + πwµw + πcµc

Therefore the mean of the mixture of gaussians is a weighted sum of the means of the individual
gaussians, where the weights are given by the mixing coefficients πw, πg, πc.

From this point onwards, to simplify the problem we will work only with two gaussians, so that the
CSF is not segmented. Therefore, the pdf is now:

p(X) = πwN (µw, σw) + (1− πw)N (µg, σg)

The clinician from your lab has been extremely nice and manually segmented the image for you
(this is pain, but it is done a lot to train large neural networks!). You want to use this information
to estimate the parameters πw, µw, µg, σw, σg, so you introduce a new random variable Z which
corresponds to the type of tissue. Therefore, for each pixel i in the image you have its pixel value
xi and its tissue type zi which so that zi = 0 for gray matter and zi = 1 for white matter. The joint
probability density of these variables is given by:

p(X,Z) = πz
wN (µw, σw)

z(1− πw)
1−zN (µw, σw)

1−z

Note that substitution of z = 0 or z = 1 simply yields a gaussian distribution with the mean and
variance for that particular tissue.+ You now want to ensure that the marginal distributions make
sense in terms of known distributions-
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c) First, show that the marginal distriburion corresponds to p(X). Do it by marginalizing so that

p(X) =
∑1

z=0 p(X,Z)

Solution: To compute the marginal distribution p(X), we need to sum over the possible values
of Z. If we evaluate first for z = 0:

p(X,Z = 0) = (1− πw)N (µg, σg)

And for z = 1:
p(X,Z = 1) = πwN (µw, σw)

Therefore, the marginal distribution is given by:

p(X) = p(X,Z = 0) + p(X,Z = 1) = (1− πw)N (µg, σg) + πwN (µw, σw)

d) Now compute the marginal p(Z) by integrating over all possible values of x, that is p(Z) =∫ +∞
−∞ p(X,Z)dX. Do it separately for z = 0 and z = 1.

Solution: As suggested, we compute p(Z = 0) first:

p(Z = 0) =

∫ +∞

−∞
p(X,Z = 0)dx = (1− πw)

∫ +∞

−∞
N (µg, σg) = 1− πw

Similarly, for z = 1:

p(Z = 1) =

∫ +∞

−∞
p(X,Z = 1)dx = πw

∫ +∞

−∞
N (µw, σw) = πw

We can compact this into the pdf of a bernoulli distribution with p = πw:

p(Z) = πz
w(1− πw)

1−z

At this point you feel more prepared to estimate the parameters from the image. Assume you
have n pixels, each of them has a pixel value xi and zi.

e) First, show that the log-likelihood as a function of the 5 parameters is given by:

l(πw, µw, σw, µg, σg) =

n∑
i=1

zi
(
log(πw)−

1

2
log

(
2πσ2

w

)
− (xi − µw)

2

2σ2
w

)
+(1−zi)

(
log(πg)−

1

2
log

(
2πσ2

g

)
−
(xi − µ2

g)

2σ2
g

)
Solution: The likelihood of n independent samples is given by: L(πw, µw, σw, µg, σg) =∏n

i=1 p(xi, zi)

Upon substituting the expression for p(xi, zi) we have and applying the logarithm:

l(πw, µw, σw, µg, σg) =

n∑
i=1

zi(log(πw)+log(N (µw, σw))+(1−zi)(log(1− πw)+log(N (µg, σg)))

Substituting the expressions for the normal distributions yields the mentioned expression.

f) At this point you wonder if your job is worth dealing with this expression... Nonetheless, you
persevere and and decide to start by find the maximum likelihood estimate of πw. By

∂l
∂πw

= 0,

show that π̂w = 1
n

∑n
i=1 zi.
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Solution: We compute the derivative with respect the parameter

∂l

∂πw
=

n∑
i=1

(
zi
π̂w

− 1− zi
1− π̂w

) = 0

We solve to find π̂w:

1

π̂w

n∑
i=1

zi −
1

1− π̂w
(n−

n∑
i=1

zi) =
(1− π̂w)

∑n
i=1 zi − π̂wn+ π

∑n
i=1 zi

π̂w(1− π̂w)

Discarding the trivial solutions π̂w = 0 and π̂w = 1, we cancel out the denominator and we
have:

(1− π̂w)

n∑
i=1

zi − π̂wn+ π̂w

n∑
i=1

zi =

n∑
i=1

zi − π̂wn = 0

Therefore:

π̂w =
1

n

n∑
i=1

zi

Which is simply the fraction of white matter pixels in the image.

g) That was not so bad... (hopefully). Similarly, show now that the expressions for µw and σw

are given by:

µ̂w =

∑n
i=1 zixi∑n
i=1 zi

σ̂2
w =

∑n
i=1 zi(xi − µw)

2∑n
i=1 zi

Solution: We substitute the pdf of the normal and compute the derivative with respect the
parameter µw:

∂l

∂µw
=

n∑
i=1

zi(
xi − µ̂w

σ2
w

) = 0

Since σ2
w is positive, we can multiply by it and we have:

n∑
i=1

(zixi)− µ̂w

n∑
i=1

zi = 0

Therefore:

µ̂w =

∑n
i=1 zixi∑n
i=1 zi

For the variance, we compute the derivative with respect to σ2
w:

∂l

∂σ2
w

=

n∑
i=1

zi(
(xi − µ̂w)

2

2σ4
w

− 1

2σ2
w

) = 0
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Again, since σ2
w is positive, we can multiply by it and we have:

n∑
i=1

zi(xi − µ̂w)
2 − σ̂2

w

n∑
i=1

zi = 0

Therefore:

σ̂2
w =

∑n
i=1 zi(xi − µ̂w)

2∑n
i=1 zi

With this information, you are ready to take the segmented image and fit your gaussian mixture
model! As a final step, you want to compare the average pixel value of the white matter µw to some
reference value that a colleague has given to you. Assume that you have an image of n = 5122 pixels
and that 30 % of them have been identified as white matter. The value you have computed for the
mean is µ̂w = 0.802 and the variance is σ̂w = 0.01; the mean given by your colleague is µw = 0.8.
You decide to do a t-test to test whether the to values for the mean are different or not.

h) Write down the test by stating the null hypothesis and the alternative.

Solution:

• H0 : µw = 0.8

• H1 : µw ̸= 0.8

Note that since we test for difference the test is two-sided.

i) Compute the t-statistic for the test, think carefully what is the number of samples used to
compute the mean.

Solution: Since we have n = 5122 pixels and 30% of them are white matter, we have nWM =
0.3 · n = 0.3 · 5122. Therefore, the t-statistic is given by:

t =
µ̂w − µw

σ̂w/
√
nWM

=
0.802− 0.8

0.01/
√
0.3 · 5122

= 56.09

We already see that this is very large.

j) To what reference distribution should you compare in this case? Do you think it is appropiate
to approximate it with a normal?

Solution: The reference distribution is a t-distribution with nWM − 1 degrees of freedom.
As the number of samples is very large, we could also use a normal distribution since the
t-distribution converges to a normal distribution as the degrees of freedom increase.

k) What is the p-value of the test? How do you interpret this result?

Solution: Seeing the t-statistic, the p-value is essentially 0. This is due to performing the
test with an extremely large number of samples. This is called the fallacy of hypothesis testing
where, as the number of samples used for test increases, the test becomes more sensitive to
small differences and everything becomes significant. Remember that significance only relates
to the type I error (false positives) and not to the type II error (false negatives). The test
might be significance, but we can still be having an extremely large type II error.
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Question 5: Sampling Distribution and Hypothesis Testing in
Gene Expression Data

Problem: In a study of gene expression for Gene X, the expression levels in healthy individuals are
assumed to be normally distributed. Let

X1, X2, . . . , X16 ∼ N(µ, 100)

denote the expression levels measured from a random sample of 16 individuals. We are interested
in:

a) Deriving the sampling distribution of the sample mean X̄.

b) Testing the hypothesis given that the known benchmark expression level in healthy individuals
is µ0 = 50 and an observed sample mean is x̄ = 55. In particular, test

H0 : µ = 50 vs. H1 : µ > 50,

by computing the corresponding z-score and p-value, and interpret the result.

Solution:

a) Sampling Distribution of X̄:
Since the individual observations are independent and normally distributed, the sum

S =

16∑
i=1

Xi

follows
S ∼ N(16µ, 16 · 100) = N(16µ, 1600).

The sample mean is given by

X̄ =
S

16
.

By the properties of normal distributions under linear transformations, it follows that

X̄ ∼ N

(
µ,

1600

162

)
= N

(
µ,

100

16

)
= N(µ, 6.25).

b) Hypothesis Testing:
Under H0 : µ = 50, the sampling distribution of X̄ is

X̄ ∼ N

(
50,

100

16

)
= N(50, 6.25).

The z-score is computed as

z =
x̄− µ0√
100/16

=
55− 50√

6.25
=

5

2.5
= 2.

For the one-sided alternative H1 : µ > 50, the p-value is

p = P (Z ≥ 2) ≈ 0.0228.

Interpretation: A p-value of approximately 0.0228 indicates that there is a 2.28% probability
of observing a sample mean of 55 or higher if the true mean were 50. This low p-value
provides evidence against H0, suggesting that the gene expression level in healthy individuals
is significantly higher than 50.
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Question 6: Affine Transformations of Random Variables

Let X be a d-dimensional random vector with mean µ and covariance matrix Σ. Let Y = AX+ b,
where A is a n× d matrix and b is a n-dimensional vector.

(a) Show that the mean of Y is Aµ+ b.

(b) Show that the covariance matrix of Y is AΣAT .

Solution:

(a)
E(Y) = E(AX+ b) = E(AX) + E(b)

= AE(X) + b = Aµ+ b

(b)
Var(Y) = E

[
(Y − EY)(Y − EY)T

]
= E

[
(AX+ b−Aµ− b)(AX+ b−Aµ− b)T

]
= E

[
(AX−Aµ)(AX−Aµ)T

]
= E

[
A(X− µ)(X− µ)TAT

]
= AE

[
(X− µ)(X− µ)T

]
AT

= AΣAT

Question 7: Maximum Likelihood Estimation

Let x1, x2, . . . , xn be independent samples from the following distribution:

P (x | θ) = θx−θ−1 where θ > 1, x ≥ 1

Find the maximum likelihood estimator of θ.

Solution:

L(θ | x1, x2, . . . , xn) =

n∏
i=1

θx−θ−1
i = θn

n∏
i=1

x−θ−1
i

lnL(θ | x1, x2, . . . , xn) = n ln θ − (θ + 1)

n∑
i=1

lnxi

δ lnL

δθ
=

n

θ
−

n∑
i=1

lnxi = 0

θmle =
n∑n

i=1 lnxi

Since θ > 1, any θmle ≤ 1 has a zero probability of generating any data, so our best estimate of
θ when θmle ≤ 1 is θmle = 1. Therefore, the final answer is θmle = max(1, n∑n

i=1 ln xi
).

However, we will still accept θmle =
n∑n

i=1 ln xi
.

9



Question 8: Linear Regression

Recall that if we model our input data as linear plus Gaussian noise in the y-values, Y | x ∼
N (w⊤x, σ2), then the maximum likelihood estimator is the w that minimizes the residual sum of
squares

n∑
i=1

(X⊤
i w − yi)

2,

where the samples are X1, X2, . . . , Xn and their targets are y1, y2, . . . , yn.
Let’s model noise with a Laplace distribution instead of a normal distribution. The probability

density function (PDF) of Laplace(µ, b) is

P (y) =
1

2b
exp

(
−|y − µ|

b

)
.

Show that if we model our input data as a line plus Laplacian noise in the y-values, i.e.

Y | x ∼ Laplace(w⊤x, b),

then the maximum likelihood estimator is the w that minimizes the sum of absolute residuals

n∑
i=1

∣∣X⊤
i w − yi

∣∣ .
Solution: We wish to maximize the log-likelihood:

ln

n∏
i=1

P (yi | Xi) =

n∑
i=1

ln

(
1

2b
e−|yi−X⊤

i w|/b
)

= −1

b

n∑
i=1

|yi −X⊤
i w| − n ln(2b),

which is equivalent to minimizing

n∑
i=1

|X⊤
i w − yi|

.

Question 9: Design matrix

You have the data shown in Table 1 and you want to build a design matrix for a linear regression
model. The 3 variables are categorical and take the following values:

• R: 1, 2

• C: 1, 2, 3

• T (treatment): A, B, C

You want to build a design matrix with R, C and T to predict a variable of interest y, such that:

yi = µi + εi

Where µi = f(r, c, t) and εi ∼ N (0, σ2).
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R C T
1 1 A
1 3 B
1 3 C
2 1 B
2 2 A
2 3 B

Table 1: Recorded samples

1. Write down the design matrix for this data. Hint: The model should have 6 parameters (why?)
and the design matrix should have 6 columns.

2. Write down the regression model in matricial form.

3. Interpret the parameters of the model in terms of the original variables.

(a) The design matrix is constructed as follows:

R︷ ︸︸ ︷ C︷ ︸︸ ︷ T︷ ︸︸ ︷
Intercept 1 2 1 2 3 A B C

1 1 0 1 0 0 1 0 0
1 1 0 0 0 1 0 1 0
1 1 0 0 0 1 0 0 1
1 0 1 1 0 0 0 1 0
1 0 1 0 1 0 1 0 0
1 0 1 0 0 1 0 1 0


– We add a column for the intercept.

– The variables are categorical, so we use dummy codification.

– For each variable, we drop one column (red) as the sum of columns for a variable equals
the column for the intercept, leading to linear dependence, and we require a full-rank
matrix.

– The categories dropped for each variable become the reference categories.

– The choice of column to drop is arbitrary among categories for each variable.

(b) 
y1
y2
y3
y4
y5
y6

 =


1 1 1 0 1 0
1 1 0 0 0 0
1 1 0 0 0 1
1 0 1 0 0 0
1 0 0 1 1 0
1 0 0 0 0 0





β0

ρ1
ρ2
δ1
δ2
τA
τC


+


ε1
ε2
ε3
ε4
ε5
ε6



=


β0 + ρ1 + δ1 + τA

β0 + ρ1
β0 + ρ1 + τC

β0 + δ1
β0 + δ2 + τA

β0

+


ε1
ε2
ε3
ε4
ε5
ε6


11



(c)
β0 is the E[Yi] when Xi = (Ri, Ci, Ti) = (2, 3, B)

Think about unit 6, we “expect a value” of β0 for it.

δ1 = E[Yi]− E[Yj ] when Xi = (r, 1, t), Xj = (r, 3, t)

So it is the effect of C = 1 compared to C = 3, the reference.

Think about the comparison between unit 4 and unit 6.

The same of course holds for δ2.

ρ1 = E[Yi]− E[Yj ] when Xi = (1, c, t), Xj = (2, c, t)

So it is the effect of r = 1 compared to r = 2, the reference.

Think about the comparison between unit 2 and unit 6.

Similarly, τA and τC are the effects of treatments A and C compared to treatment B, the
reference (the column we dropped).
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